Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593154

RESUMO

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios , Morte Celular/genética , Linhagem Celular Tumoral , Dano ao DNA , Lipídeos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
2.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464162

RESUMO

The androgen receptor (AR) is the central determinant of prostate tissue identity and differentiation, controlling normal, growth-suppressive prostate-specific gene expression 1 . It is also a key driver of prostate tumorigenesis, becoming "hijacked" to drive oncogenic transcription 2-5 . However, the regulatory elements determining the execution of the growth suppressive AR transcriptional program, and whether this can be reactivated in prostate cancer (PCa) cells remains unclear. Canonical androgen response element (ARE) motifs are the classic DNA binding element for AR 6 . Here, we used a genome-wide strategy to modulate regulatory elements containing AREs to define distinct AR transcriptional programs. We find that activation of these AREs is specifically associated with differentiation and growth suppressive transcription, and this can be reactivated to cause death in AR + PCa cells. In contrast, repression of AREs is well tolerated by PCa cells, but deleterious to normal prostate cells. Finally, gene expression signatures driven by ARE activity are associated with improved prognosis and luminal phenotypes in human PCa patients. This study demonstrates that canonical AREs are responsible for a normal, growth-suppressive, lineage-specific transcriptional program, that this can be reengaged in PCa cells for potential therapeutic benefit, and genes controlled by this mechanism are clinically relevant in human PCa patients.

4.
Mol Cancer Res ; 22(4): 347-359, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38284821

RESUMO

IMPLICATIONS: Our study illuminates the potential of deep learning in effectively inferring key prostate cancer genetic alterations from the tissue morphology depicted in routinely available histology slides, offering a cost-effective method that could revolutionize diagnostic strategies in oncology.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/patologia , Prostatectomia , Regulador Transcricional ERG , Serina Endopeptidases/genética
5.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191471

RESUMO

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/genética , Próstata , Células Estromais , Diferenciação Celular , Microambiente Tumoral/genética
6.
Cancer Res ; 84(5): 703-724, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38038968

RESUMO

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Lipólise/genética , Metabolismo dos Lipídeos , Lipase/genética , Lipase/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
7.
Sci Data ; 10(1): 830, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007532

RESUMO

Prostate cancer is the second most common cancer in men and affects 1 in 9 men in the United States. Early screening for prostate cancer often involves monitoring levels of prostate-specific antigen (PSA) and performing digital rectal exams. However, a prostate biopsy is always required for definitive cancer diagnosis. The Early Detection Research Network (EDRN) is a consortium within the National Cancer Institute aimed at improving screening approaches and early detection of cancers. As part of this effort, the Weill Cornell EDRN Prostate Cancer has collected and biobanked specimens from men undergoing a prostate biopsy between 2008 and 2017. In this report, we describe blood metabolomics measurements for a subset of this population. The dataset includes detailed clinical and prospective records for 580 patients who underwent prostate biopsy, 287 of which were subsequentially diagnosed with prostate cancer, combined with profiling of 1,482 metabolites from plasma samples collected at the time of biopsy. We expect this dataset to provide a valuable resource for scientists investigating prostate cancer metabolism.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Biópsia , Estudos Prospectivos , Próstata , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Estados Unidos
8.
Sci Rep ; 13(1): 20909, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017150

RESUMO

Prostate cancer (PCa) is a significant health burden in Sub-Saharan Africa, with mortality rates loosely linked to African ancestry. Yet studies aimed at identifying contributing risk factors are lacking within the continent and as such exclude for significant ancestral diversity. Here, we investigate a series of epidemiological demographic and lifestyle risk factors for 1387 men recruited as part of the multi-ethnic Southern African Prostate Cancer Study (SAPCS). We found poverty to be a decisive factor for disease grade and age at diagnosis, with other notably significant PCa associated risk factors including sexually transmitted diseases, erectile dysfunction, gynaecomastia, and vertex or complete pattern balding. Aligned with African American data, Black ethnicity showed significant risk for PCa diagnosis (OR = 1.44, 95% CI 1.05-2.00), and aggressive disease presentation (ISUP ≥ 4: OR = 2.25, 95% CI 1.49-3.40). New to this study, we demonstrate African ancestral population substructure associated PCa disparity, observing increased risk for advanced disease for the southern African Tsonga people (ISUP ≥ 4: OR = 3.43, 95% CI 1.62-7.27). Conversely, South African Coloured were less likely to be diagnosed with aggressive disease overall (ISUP ≥ 3: OR = 0.38, 95% 0.17-0.85). Understanding the basis for PCa health disparities calls for African inclusion, however, lack of available data has limited the power to begin discussions. Here, focusing on arguably the largest study of its kind for the African continent, we draw attention to the contribution of within African ancestral diversity as a contributing factor to PCa health disparities within the genetically diverse region of southern Africa.


Assuntos
População Negra , Neoplasias da Próstata , Humanos , Masculino , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Fatores de Risco , África do Sul
9.
Mol Cancer ; 22(1): 162, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789377

RESUMO

Genetic signatures have added a molecular dimension to prognostics and therapeutic decision-making. However, tumour heterogeneity in prostate cancer and current sampling methods could confound accurate assessment. Based on previously published spatial transcriptomic data from multifocal prostate cancer, we created virtual biopsy models that mimic conventional biopsy placement and core size. We then analysed the gene expression of different prognostic signatures (OncotypeDx®, Decipher®, Prostadiag®) using a step-wise approach with increasing resolution from pseudo-bulk analysis of the whole biopsy, to differentiation by tissue subtype (benign, stroma, tumour), followed by distinct tumour grade and finally clonal resolution. The gene expression profile of virtual tumour biopsies revealed clear differences between grade groups and tumour clones, compared to a benign control, which were not reflected in bulk analyses. This suggests that bulk analyses of whole biopsies or tumour-only areas, as used in clinical practice, may provide an inaccurate assessment of gene profiles. The type of tissue, the grade of the tumour and the clonal composition all influence the gene expression in a biopsy. Clinical decision making based on biopsy genomics should be made with caution while we await more precise targeting and cost-effective spatial analyses.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Biópsia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Genômica
10.
Eur Urol ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659962

RESUMO

BACKGROUND: The antidiabetic drug metformin has known anticancer effects related to its antioxidant activity; however, its clinical benefit for prostate cancer (PCa) has thus far been inconclusive. Here, we investigate whether the efficacy of metformin in PCa is related to the expression status of NKX3.1, a prostate-specific homeobox gene that functions in mitochondria to protect the prostate from aberrant oxidative stress. OBJECTIVE: To investigate the relationship of NKX3.1 expression and metformin efficacy in PCa. DESIGN, SETTING, AND PARTICIPANTS: Functional studies were performed in vivo and in vitro in genetically engineered mouse models and human LNCaP cells, and organotypic cultures having normal or reduced/absent levels of NKX3.1. Correlative studies were performed using two independent retrospective tissue microarray cohorts of radical prostatectomies and a retrospective cohort of prostate biopsies from patients on active surveillance. INTERVENTION: Metformin was administered before or after the induction of oxidative stress by treatment with paraquat. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Functional endpoints included analyses of histopathology, tumorigenicity, and mitochondrial function. Correlative endpoints include Kaplan-Meier curves and Cox proportional hazard regression models. RESULTS AND LIMITATIONS: Metformin reversed the adverse consequences of NKX3.1 deficiency following oxidative stress in vivo and in vitro, as evident by reduced tumorigenicity and restored mitochondrial function. Patients with low NKX3.1 expression showed a significant clinical benefit from taking metformin. CONCLUSIONS: Metformin can overcome the adverse consequences of NKX3.1 loss for PCa progression by protecting against oxidative stress and promoting normal mitochondrial function. These functional activities and clinical correlates were observed only with low NKX3.1 expression. Thus, the clinical benefit of metformin in PCa may depend on the status of NKX3.1 expression. PATIENT SUMMARY: Prostate cancer patients with low NKX3.1 are likely to benefit most from metformin treatment to delay disease progression in a precision interception paradigm.

11.
Clin Cancer Res ; 29(23): 4930-4940, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721526

RESUMO

PURPOSE: Phosphatase and tensin homolog (PTEN) loss-of-function/PI3K pathway hyperactivation is associated with poor therapeutic outcomes and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies in Pb-Cre;PTENfl/flTrp53fl/fl genetically engineered mice (GEM) with aggressive-variant prostate cancer (AVPC) demonstrated tumor growth control in 60% mice following androgen deprivation therapy/PI3K inhibitor (PI3Ki)/programmed cell death protein 1 (PD-1) antibody combination, via abrogating lactate cross-talk between cancer cells and tumor-associated macrophages (TAM), and suppression of histone lactylation (H3K18lac)/phagocytic activation within TAM. Here, we targeted immunometabolic mechanism(s) of PI3Ki resistance, with the goal of durable tumor control in AVPC. EXPERIMENTAL DESIGN: Pb-Cre;PTENfl/flTrp53fl/fl GEM were treated with PI3Ki (copanlisib), MEK inhibitor (trametinib) or Porcupine inhibitor (LGK'974) singly or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ex vivo coculture mechanistic studies were performed on GEM tumors or corresponding tumor-derived cell lines. RESULTS: Given our proteomic profiling showing persistent MEK signaling within tumors of PI3Ki-resistant GEM, we tested whether addition of trametinib to copanlisib enhances tumor control in GEM, and we observed 80% overall response rate via additive suppression of lactate within TME and H3K18lac within TAM, relative to copanlisib (37.5%) monotherapy. The 20% resistant mice demonstrated feedback Wnt/ß-catenin activation, resulting in restoration of lactate secretion by tumor cells and H3K18lac within TAM. Cotargeting Wnt/ß-catenin signaling with LGK'974 in combination with PI3Ki/MEKi, demonstrated durable tumor control in 100% mice via H3K18lac suppression and complete TAM activation. CONCLUSIONS: Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios , beta Catenina/metabolismo , Linhagem Celular Tumoral , Lactatos , Chumbo/metabolismo , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fagocitose , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteômica , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Clin Cancer Res ; 29(21): 4464-4478, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581614

RESUMO

PURPOSE: Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN: Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS: We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNß signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS: We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNß signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , NF-kappa B/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/uso terapêutico , Microambiente Tumoral
13.
Cancer Epidemiol Biomarkers Prev ; 32(10): 1436-1443, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37555839

RESUMO

BACKGROUND: The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS: We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS: We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS: We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT: Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias da Próstata , Masculino , Humanos , Seguimentos , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Mutação em Linhagem Germinativa , Regulador Transcricional ERG/genética , Serina Endopeptidases/genética
14.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502956

RESUMO

The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.

15.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292972

RESUMO

Purpose: PTEN loss-of-function/PI3K pathway hyperactivation occurs in ∼50% of metastatic, castrate-resistant prostate cancer patients, resulting in poor therapeutic outcomes and resistance to immune checkpoint inhibitors across multiple malignancies. Our prior studies in prostate-specific PTEN/p53-deleted genetically engineered mice (Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM) with aggressive-variant prostate cancer (AVPC) demonstrated feedback Wnt/ß-catenin signaling activation in 40% mice resistant to androgen deprivation therapy (ADT)/PI3K inhibitor (PI3Ki)/PD-1 antibody (aPD-1) combination, resulting in restoration of lactate cross-talk between tumor-cells and tumor-associated macrophages (TAM), histone lactylation (H3K18lac) and phagocytic suppression within TAM. Here, we targeted immunometabolic mechanism(s) of resistance to ADT/PI3Ki/aPD-1 combination, with the goal of durable tumor control in PTEN/p53-deficient PC. Experimental design: Pb-Cre;PTEN fl/fl Trp53 fl/fl GEM were treated with either ADT (degarelix), PI3Ki (copanlisib), aPD-1, MEK inhibitor (trametinib) or Porcupine inhibitor (LGK 974) as single agents or their combinations. MRI was used to monitor tumor kinetics and immune/proteomic profiling/ ex vivo co-culture mechanistic studies were performed on prostate tumors or established GEM-derived cell lines. Results: We tested whether Wnt/ß-catenin pathway inhibition with LGK 974 addition to degarelix/copanlisib/aPD-1 therapy enhances tumor control in GEM, and observed de novo resistance due to feedback activation of MEK signaling. Based on our observation that degarelix/aPD-1 treatment resulted in partial inhibition of MEK signaling, we substituted trametinib for degarelix/aPD-1 treatment, and observed a durable tumor growth control of PI3Ki/MEKi/PORCNi in 100% mice via H3K18lac suppression and complete TAM activation within TME. Conclusions: Abrogation of lactate-mediated cross-talk between cancer cells and TAM results in durable ADT-independent tumor control in PTEN/p53-deficient AVPC, and warrants further investigation in clinical trials. STATEMENT OF TRANSLATIONAL RELEVANCE: PTEN loss-of-function occurs in ∼50% of mCRPC patients, and associated with poor prognosis, and immune checkpoint inhibitor resistance across multiple malignancies. Our prior studies have demonstrated that ADT/PI3Ki/PD-1 triplet combination therapy controls PTEN/p53-deficient PC in 60% of mice via enhancement of TAM phagocytosis. Here, we discovered that resistance to ADT/PI3K/PD-1 therapy occurred via restoration of lactate production via feedback Wnt/MEK signaling following treatment with PI3Ki, resulting in inhibition of TAM phagocytosis. Critically, co-targeting of PI3K/MEK/Wnt signaling pathways using an intermittent dosing schedule of corresponding targeted agents resulted in complete tumor control and significantly prolonged survival without significant long-term toxicity. Collectively, our findings provide "proof-of-concept" that targeting lactate as a macrophage phagocytic checkpoint controls growth of murine PTEN/p53-deficient PC and warrant further investigation in AVPC clinical trials.

16.
BJUI Compass ; 4(4): 473-481, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37334024

RESUMO

Rationale and objectives: The study aims to propose an optimal workflow in patients with a PI-RADS 3 (PR-3) assessment category (AC) through determining the timing and type of pathology interrogation used for the detection of clinically significant prostate cancer (csPCa) in these men based upon a 5-year retrospective review in a large academic medical center. Materials and methods: This United States Health Insurance Probability and Accountability Act (HIPAA)-compliant, institutional review board-approved retrospective study included men without prior csPCa diagnosis who received PR-3 AC on magnetic resonance (MR) imaging (MRI). Subsequent incidence and time to csPCa diagnosis and number/type of prostate interventions was recorded. Categorical data were compared using Fisher's exact test and continuous data using ANOVA omnibus F-test. Results: Our cohort of 3238 men identified 332 who received PR-3 as their highest AC on MRI, 240 (72.3%) of whom had pathology follow-up within 5 years. csPCa was detected in 76/240 (32%) and non-csPCa in 109/240 (45%) within 9.0 ± 10.6 months. Using a non-targeted trans-rectal ultrasound biopsy as the initial approach (n = 55), another diagnostic procedure was required to diagnose csPCa in 42/55 (76.4%) of men, compared with 3/21(14.3%) men with an initial MR targeted-biopsy approach (n = 21); (p < 0.0001). Those with csPCa had higher median serum prostate-specific antigen (PSA) and PSA density, and lower median prostate volume (p < 0.003) compared with non-csPCa/no PCa. Conclusion: Most patients with PR-3 AC underwent prostate pathology exams within 5 years, 32% of whom were found to have csPCa within 1 year of MRI, most often with a higher PSA density and a prior non-csPCa diagnosis. Addition of a targeted biopsy approach initially reduced the need for a second biopsy to reach a for csPCa diagnosis. Thus, a combination of systematic and targeted biopsy is advised in men with PR-3 and a co-existing abnormal PSA and PSA density.

17.
Sci Transl Med ; 15(694): eade5855, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134151

RESUMO

Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.


Assuntos
Neoplasias da Próstata , Fator A de Crescimento do Endotélio Vascular , Masculino , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Transdução de Sinais , Antígeno B7-H1/genética , Neoplasias da Próstata/metabolismo
18.
bioRxiv ; 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37034687

RESUMO

Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.

19.
Mol Cancer Res ; 21(1): 14-23, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36125519

RESUMO

The most common somatic event in primary prostate cancer is a fusion between the androgen-related TMPRSS2 gene and the ERG oncogene. Tumors with these fusions, which occur early in carcinogenesis, have a distinctive etiology. A smaller subset of other tumors harbor fusions between TMPRSS2 and members of the ETS transcription factor family other than ERG. To assess the genomic similarity of tumors with non-ERG ETS fusions and those with fusions involving ERG, this study derived a transcriptomic signature of non-ERG ETS fusions and assessed this signature and ERG-related gene expression in 1,050 men with primary prostate cancer from three independent population-based and hospital-based studies. Although non-ERG ETS fusions involving ETV1, ETV4, ETV5, or FLI1 were individually rare, they jointly accounted for one in seven prostate tumors. Genes differentially regulated between non-ERG ETS tumors and tumors without ETS fusions showed similar differential expression when ERG tumors and tumors without ETS fusions were compared (differences explained: R2 = 69-77%), including ETS-related androgen receptor (AR) target genes. Differences appeared to result from similarities among ETS tumors rather than similarities among non-ETS tumors. Gene sets associated with ERG fusions were consistent with gene sets associated with non-ERG ETS fusions, including fatty acid and amino acid metabolism, an observation that was robust across cohorts. IMPLICATIONS: Considering ETS fusions jointly may be useful for etiologic studies on prostate cancer, given that the transcriptome is profoundly impacted by ERG and non-ERG ETS fusions in a largely similar fashion, most notably genes regulating metabolic pathways.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , Regulador Transcricional ERG/genética , Serina Endopeptidases/genética
20.
Blood ; 141(4): 391-405, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36126301

RESUMO

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Mieloma Múltiplo/genética , Cromatina , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...